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Abstract

Accurate segmentation of the prostate from magnetic resonance (MR) images provides useful 

information for prostate cancer diagnosis and treatment. However, automated prostate 

segmentation from 3D MR images faces several challenges. The lack of clear edge between the 

prostate and other anatomical structures makes it challenging to accurately extract the boundaries. 

The complex background texture and large variation in size, shape and intensity distribution of the 

prostate itself make segmentation even further complicated. Recently, as deep learning, especially 

convolutional neural networks (CNNs), emerging as the best performed methods for medical 

image segmentation, the difficulty in obtaining large number of annotated medical images for 

training CNNs has become much more pronounced than ever. Since large-scale dataset is one of 

the critical components for the success of deep learning, lack of sufficient training data makes it 

difficult to fully train complex CNNs. To tackle the above challenges, in this paper, we propose a 

boundary-weighted domain adaptive neural network (BOWDA-Net). To make the network more 

sensitive to the boundaries during segmentation, a boundary-weighted segmentation loss is 

proposed. Furthermore, an advanced boundary-weighted transfer leaning approach is introduced to 

address the problem of small medical imaging datasets. We evaluate our proposed model on three 

different MR prostate datasets. The experimental results demonstrate that the proposed model is 

more sensitive to object boundaries and outperformed other state-of-the-art methods.
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I. Introduction

ACCURATELY segmenting prostate magnetic resonance (MR) images plays an important 

role in prostate diseases diagnosis and treatment, particularly for prostate cancer, which is 

one of the most common types of cancer in men [1]. In clinical practice, medical images can 

usually be manually segmented by radiologists, which is an expensive and time-consuming 

process and also prone to inter- and intra-observer variations. Automated segmentation of 

prostate MR image is highly desirable in clinical practice. Over the past decade, a number of 

research groups have proposed various automated prostate segmentation methods. For 

instance, Shen et al. [2] presented a statistical shape model for automatic prostate 

segmentation in ultrasound images by modeling the shape of the prostate. Guo et al. [3] 

proposed a deformable prostate segmentation method, which employed deep feature 

learning model to extract prostate representation and utilized the sparse patch matching 

method to infer prostate likelihood map. Tian et al. [4] proposed a superpixel-based 3D 

graph cut algorithm by combining a 3D graph cuts and a 3D active contour model for 

segmenting the prostate MR images. Although those methods achieved promising 

performance on prostate segmentation, the complexity of prostate MR images makes it a 

very challenging problem.

Recently, deep convolutional neural networks (CNNs) have achieved state-of-the-art 

performance in many fields [5]–[12], particularly in computer vision and image 

understanding [13]–[15]. Many researchers have also employed CNNs in prostate 

segmentation [16]–[18]. For instance, Milletari et al. [19] proposed a volumetric CNN, 

which can segment prostate volumes in a fast and end-to-end manner. Yang et al. [20] 

proposed a novel network, which seamlessly integrates feature extraction, shape prior 

exploring and boundary estimation together for prostate segmentation. Although great 

progress has been achieved, there remain challenges that have not been fully addressed, 

which results in a gap between the clinical needs and the performance of automatic 

segmentation.

One of the major difficulties in prostate MR image segmentation is that part of the prostate 

lacks of clear boundary with surrounding tissues, which can be further complicated by 

complex background texture and large variation in size, shape and intensity distribution of 

the prostate itself. Another major challenge is caused by the lack of enough training data, 

which makes it difficult to get complex networks fully trained as large dataset is a key pillar 

of the success of CNNs. Thus, the capability of CNNs can be limited for such segmentation 

tasks. Facing the above challenges, a number of methods have been proposed from different 

aspects. For instance, Yu et al. [21] designed an efficient volumetric CNN by employing 

mixed long and short residual connections for improving the training efficiency and 

discriminating capability under limited training data. Nie et al. [22] proposed a region-

attention based semi-supervised learning strategy to overcome the challenge that lack of 

enough training data by employing unlabeled data. To reduce the influence from noise and 

suppress the tissues around the prostate with similar intensity, Wang et al. [23] developed a 

novel deep neural network which utilized the attention mechanism to selectively leverage the 

multi-level features for prostate segmentation. Although these methods improved the 

representation capability of network and training efficiency under limited data, obtaining 
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accurate segmentation at slices in the apex and base areas lacking boundary information is 

still a challenging problem. In addition, efficiently utilizing additional data for training to 

improve the performance in those difficult locations is yet to be explored.

In this paper, to tackle the above-mentioned challenges and effectively utilize additional 

datasets to improve network training, a series of experimental settings are designed and 

tested. A novel boundary-weighted domain adaptive neural network (BOWDA-Net) is then 

proposed, inspired by the recent progress in adversarial learning [24] and transfer learning 

[25]–[29]. The proposed BOWDA-Net employs transfer learning to exploit useful 

information from other datasets to overcome the challenge of training data shortage. 

Specifically, to make the process of transfer sensitive to boundaries and to achieve accurate 

segmentation results even at places with weak boundaries, a boundary-weighted transfer loss 

(BWTL) is designed to work together with a deep supervision mechanism. Furthermore, to 

help the image segmentation network quickly converge to segmenting boundaries, we design 

a boundary-weighted segmentation loss (BWSL) as the supervised loss of segmentation 

network. Extensive experiments were performed on three prostate image datasets, MICCAI 

2012 Prostate MR Image Segmentation (PROMISE12) challenge1 dataset, Philips 3T MR 

prostate image dataset, and the Brigham and Women’s Hospital (BWH) Multiparametric 

MR (mpMR) prostate image dataset [30], [31]. The results corroborate the effectiveness of 

our proposed boundary-weighted domain adaptive neural network (BOWDA-Net). Our 

method outperformed other state-of-the-art methods and ranked the first in the PROMISE12 

challenge.

The remainder of the paper is organized as follows. Section II provides a brief review of the 

related works. Section III describes the datasets and Section IV presents the proposed 

BOWDA-Net in detail. In Section V, various experiments on prostate MR image 

segmentation are performed to validate the proposed methods. Finally, several concluding 

remarks are drawn in Section VI.

II. Related Works

In this section, we briefly review the related works on prostate image segmentation and 

domain adaptation methods for medical image segmentation.

A. Prostate Image Segmentation

Accurately segmenting the prostate from images acquired with varying MR protocols and 

scanners remains a challenge, due to the presence of weak and ambiguous boundaries, as 

well as the large variability in image contrast and appearance. Conventional methods tried to 

deal with these problems using shape priors or image priors like atlases. For example, to 

increase the robustness of boundary detection for segmenting the prostate in MR images, 

Gao et al. [32] proposed a unified shape-based framework to extract the prostate, which 

consists of two steps, shape registration and shape prior learning. To accurately select atlases 

for atlas-based image segmentation, Yan et at. [33] proposed a label image constrained atlas 

1https://promise12.grand-challenge.org/
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selection method, which exploits the label images to constrain the manifold projection of 

raw images.

Recently, deep convolutional neural networks (CNNs) have achieved state-of-the-art 

performances in many fields due to their strong capability in feature representation. CNNs 

have also been used for prostate image segmentation. Researchers initially used CNNs as 

feature extractors and then combine them with traditional methods, such as the active shape 

model or level sets, for feature classification. For example, Cheng et al. [18] proposed a 

supervised machine learning model that combines atlas based Active Appearance Model 

(AAM) with a deep learning model to segment the prostate from MR images. Guo et al. [34] 

proposed a deformable segmentation method by unifying deep feature learning with the 

sparse patch matching. As the use of CNNs in image segmentation advanced, fully 

convolutional network (FCN) based method was proposed for prostate image segmentation. 

For instance, Zhu et al. [35] proposed a novel network with bidirectional convolutional 

recurrent layers to extract both intra-slice and inter-slice information of the prostate for 

segmentation. Furthermore, to exploit the 3D spatial information, a few studies employed 

3D CNNs to extract volumetric features for segmentation. For example, Yu et al. [36] 

designed an efficient volumetric CNN by employing mixed long and short residual 

connections to improve the training efficiency and discriminating capability with limited 

training data, which outperformed other competitors in MICCAI PROMISE12 challenge in 

2017. To robustly and accurately detect the boundary points of the prostate, Brosch et al. 

[37] formulated boundary detection as a regression task and employed a convolutional 

neural network to predict the distances between a surface mesh and the corresponding 

boundary points, which then achieved the first place of the MICCAI PROMISE12 challenge 

in 2018.

B. Domain Adaptation in Medical Images Segmentation

Although CNNs have been successfully applied to automated medical image segmentation, 

such methods suffer from performance degradation when being applied to new datasets 

different from the training data caused by the problem of domain shift. Recently, several 

studies have investigated domain adaptation in deep neural networks and applied to medical 

image analysis tasks. For example, Kamnitsas et al. [38] developed an unsupervised domain 

adaptation method for image segmentation by investigating adaptation between databases 

acquired using two different scanners with difference MR imaging sequences. Ghafoorian et 

al. [25] conducted extensive experiments in white matter hyperintensity segmentation and 

evaluated the performance of the domain-adapted network with varying sizes of domain 

data. Goetz et al. [39] tried to employ domain adaptation techniques for effectively 

correcting the sampling selection errors introduced by the sparse sampling to segment tumor. 

Recently, Mahmood et al. [40] introduced a novel unsupervised reverse domain adaptation 

framework for addressing the issue of cross-patient network adaptability and limited 

availability of annotated medical images. The proposed framework first makes real medical 

images more like synthetic images by employed adversarial training, and meanwhile 

preserves clinically-relevant features via self-regularization. After that a network trained on 

a large dataset of synthetically-generated data be applied for these domain-adapted 

synthetic-like images. In addition, to overcome the challenge of domain shift between cross-
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modality medical data, Dou et al. [41] presented a cross-modality domain adaptation 

framework with unsupervised adversarial learning, which implicitly maps the target data to 

the feature space of source domain. And Jiang et at. [42] presented a tumor-aware, 

adversarial domain adaptation method for MR image segmentation with unpaired CT and 

MR images by preserving tumors on synthesized MR images produced from CT image.

III. Materials

In our work, MICCAI 2012 Prostate MR Image Segmentation (PROMISE12) challenge 

dataset is used as the target domain dataset, a benchmark for evaluating algorithms of 

segmenting the prostate from MR images. In addition, it is publicly available, performance 

comparison can be easily performed with other state-of-the-art methods. In that dataset, 

there are in total 50 transversal T2-weighted MR images of the prostate and the 

corresponding ground truth segmentation acquired in different hospitals, which were 

checked and corrected by a radiological resident. These images are a representative set of the 

types of prostate MR images from multiple vendors and have different acquisition protocols 

and variations in voxel size, dynamic range, position, field of view and anatomic appearance.

In our experiments, a separate dataset – 81 prostate MR volumes acquired by a Philips 3T 

MR scanner with endorectal coil - is used as the source domain dataset. In this dataset, each 

volume consists of approximately 26 slices and each slice has 512×512 pixels. The in-plane 

resolution is 0.27mm×0.27mm and the inter-plane distance is 3mm.

To visualize the distribution of the datasets from these two domains, we randomly selected 

280 slices from each domain, and then used a pre-trained VGG-16 network [13] to map each 

slice to a feature vector with length of 4096. Then t-SNE [43] was employed to visualize the 

distribution of the datasets from the two domains as in Fig. 1, where domain shift between 

the source and target domains can be observed. Furthermore, to compare the boundary 

quality of the data from source domain and target domain, we computed the distribution of 

gradient magnitude at ground truth boundaries over the normalized volumetric images in 

each dataset with zero mean and unit variance. Fig. 2 shows the histograms of gradient 

magnitude at the boundary points from 1324 and 778 images from the source and target 

domains, respectively. It demonstrates that the boundary quality of data from the source 

domain is better than that of the data from the target domain.

We also used an additional dataset released by the Brigham and Women’s Hospital (BWH) 

on multi-parametric MR (mpMR) prostate dataset [30], [31]. The BWH dataset is composed 

by the baseline and repeat prostate MR exams for 15 subjects. The scans were obtained with 

the use of endorectal coil within the period of two weeks.

IV. Boundary-weighted Domain Adaptation

In this section, we first give an overview of the proposed boundary-weighted domain 

adaptive neural network (BOWDA-Net) and then present the modules in detail. As shown in 

Fig. 3, our proposed BOWDA-Net consists of three main components, which are source 

domain image segmentation network (SNet-s), target domain image segmentation network 

(SNet-t) and domain feature discriminator (D). During training, SNet-s and SNet-t learn 
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feature representations from source and target domains, respectively. Then the extracted 

features are delivered to D, which is designed to differentiate source domain features from 

those of target domain. The networks SNet-s, SNet-t and D are designed to work in an 

adversarial fashion, which is derived from the idea of adversarial learning [24], [44], to 

overcome the problem of domain shifting and more importantly to exploit the information 

carried by datasets from source domain to deal with the problems of insufficient training 

data and weak boundaries in the target domain.

In our experiments, we first train SNet-s with source domain data with cross entropy loss in 

a supervised manner. The weights of SNet-s are fixed once the training is completed. We 

then use the obtained weights to initialize SNet-t, which has exactly the same network 

architecture as SNet-s. After that, the BOWDA-Net is trained in an end-to-end fashion, 

where SNet-s and SNet-t learn feature representations from source and target domains, 

respectively, and the discriminator D tries to distinguish the extracted features by their 

domain. In our proposed BOWDA-Net, the output of D is designed to be in the same size as 

an input image. Each spatial unit of the output represents the probability of the 

corresponding input image patch belonging to the target domain. The advantage of such 

design is to deeply supervise the local patches in the feature map during the process of 

domain adaptation to differentiate the image details. Furthermore, to make the transfer 

process focus more on the boundaries and solve the problem of lacking strong edges, in our 

model, we propose a new boundary-weighted transfer loss (BWTL) for D. On top of that, to 

help the image segmentation network quickly converge to segmenting boundaries, a 

boundary-weighted segmentation loss (BWSL) is also designed to supervise the training of 

SNet-t. Details of the proposed method are presented in the following sections.

A. Boundary-weighted Knowledge Transfer

Transferring information from related data has been shown to be useful in dealing with the 

problem of lacking sufficient training data [28], [45], [46]. However, domain shift caused by 

the data distribution difference between the datasets is a common problem impacting the 

efficiency and performance of transfer learning. Recently, adversarial adaptation methods 

[47], [48] have been proposed to deal with the problem, which seek to minimize the between 

domain distance through minimizing an adversarial loss with respect to a domain 

discriminator [26], [49]. During training, the representation extractor learns feature 

representations from source and target domain respectively, the domain discriminator tries to 

distinguish the features from the source and target domain. When the domain discriminator 

cannot distinguish the data of source domain from that of target domain, the process of 

domain adaptation completed and the domain shift problem be addressed. Although existing 

methods are effective in solving the problem of domain shift and enhancing the performance 

of transferring learning, the process of transferring is not focused on the information 

required by the target domain data, which results in the existing method cannot deal 

effectively with weak boundary.

To tackle the above mentioned challenge, in this paper, we propose a supervised boundary-

weighted adversarial domain adaptation strategy. In our proposed method, to extract the 

feature information in source domain, we first train SNet-s under source domain data in a 
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supervised manner, and then freeze the weights. During training, the SNet-s, SNet-t learn 

feature representations from source and target domain respectively, and then the extracted 

features be delivered to D, which is designed to discriminate source from target domain 

feature. However, different from the traditional domain discriminator, in our model, to solve 

the problem of lacking strong boundary, where the segmentation is the most error-prone, we 

make the process of information transferring focus more on the boundaries by improving the 

capability of D in recognizing boundary. To achieve this goal, we propose a boundary-

weighted transfer loss (BWTL) for D. Let xs, ys = xsi , ysi | i = 1, …, m  represents the 

training images and ground truths from source domain, and xt, yt = xti, yti | i = 1, …, n  be 

training images ground truths from target domain. Ws and Wt denote the boundary weighted 

map of the source and target domain data, which are generated by using the corresponding 

ground truth labels. The generation process consists of two steps. First, a boundary contour 

is extracted from the ground truth label using Sobel filter, which is efficiently implemented 

for GPU computation as part of the training process. Then a 3 × 3 Gaussian filter with zero 

mean and variance σ2 = 0.64 is employed to filter the boundary map for getting boundary 

weighted maps. The BWTL for D is defined as

LD = − Exs 1 + αWs  log  D SNet−s xs
− Ext 1 + αWt  log  1 − D SNet−t xt , (1)

Where α is a weighted coefficient.

B. Boundary-weighted Segmentation Loss

Generally, for the task of image segmentation, cross entropy Lce is an effective loss function. 

Let y represents ground truth and ŷ be a segmentation result, Lce can be computed as

Lce = − ∑
y

ylog(y) + (1 − y)log(1 − y) . (2)

However, using cross entropy Lce alone may comprise the segmentation accuracy at 

boundaries, since the loss may be overwhelmed by the entire region information. To make 

the segmentation network more sensitive to the boundaries during segmentation to achieve 

accurate segmentation, in this paper, a boundary-weighted segmentation loss function 

(BWSL) is designed. During training, the BWSL utilizes an additional distance loss Ldist to 

regularize the position, shape and continuity of the segmentation to make it close to the 

object boundaries. The loss term Ldist is defined as

Ldist = β ∑
p ∈ B

y(p)Mdist(p), (3)

Where ŷ is a segmentation result, p denotes a point in the point set B containing the 

boundary points of the segmentation result, Mdist(p) is a distance map constructed by the 

distance transform of the boundary in ground truth label, and β is a weighting coefficient. 

Accordingly, the BWSL for segmentation network is computed as
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LSeg = Ldist + Lce . (4)

In summary, when training SNet-t, a total loss

Ltotal = LSeg + LD (5)

will be optimized.

C. Network Design and Configurations

The details of the networks used in our work are provided in this section. In order to fully 

leverage the 3D spatial contextual information of volumetric data to accurately segment 

prostate images, a new 3D network is designed for domain image segmentation network 

(SNet) with inspiration from the seminal work of U-Net [50] and DenseNet [5].

As it can be seen in Fig. 3, SNet-s and SNet-t contain two paths: down-sampling path and 

up-sampling path. The down-sampling path consists of one convolutional block, three 

densely-connected residual blocks (DRBs) and three average pooling layers. The pooling 

layers use stride of two, which gradually reduce the resolution of feature map and increase 

the receptive field of the convolutional layers. After the down-sampling path, an up-

sampling path is attached, which contains three deconvolutional layers and three DRBs. The 

deconvolutional layers gradually up-sample the feature map until reaching the original size. 

To further improve the gradient information flow between the down-sampling and up-

sampling paths and avoid information loss, inspired by U-Net [50], we employ long 

connections inside the network, which connect the blocks in the same resolution level from 

the down-sampling and up-sampling paths. Those connections have several advantages. 

First, they can help effectively propagate context and gradient information both forward and 

backward between down-sampling and up-sampling paths and alleviate the vanishing-

gradient problem. Second, it can help deal with the problem of information loss. To be more 

specific, when the feature map passes the convolutional and pooling layer, part of the feature 

information is abandoned and detailed information may be lost. This in turn leads to 

inaccurate boundaries in the segmentation results. After adding the long connections, the up-

sampling path can help retain the feature information from earlier blocks in the down-

sampling path to help achieve more accurate segmentation.

The DRB is a new structure proposed in our work as shown in Fig. 3, which combines 

densely connected layers, transition layers, and residual connections together to tackle the 

problem of overfitting with small training dataset and to promote information propagation 

within network for faster convergence. Inside DRB, the densely connections provide direct 

connections between all subsequent layers and the feature maps produced by all preceding 

layers are concatenated as input for the subsequent layers. To reduce the number of features 

and fuse the features from densely connected layers, a transition layer is added at the end of 

densely connected layers. The transition layer consists of an 1×1 convolutional layer, which 

reduces the number of feature maps, fuses the feature maps and hence improves the model 

compactness. To further promote information propagation and make the network easier to 

optimize, residual connections are employed by DRBs. Formally, consider an input image x0 
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that is passed through the DRB. Let xl be the output of the lth convolutional layer, Hl is a 

non-liner transformation of the lth layer and defined as a convolution followed by a batch 

normalization and a rectifier non-linearity (ReLU). For the DRBs, the output is

x = Ht Hl x0, x1, …, xl − 1 + x0, (6)

where [x0, x1, …, xl−1] represents the concatenation of the feature maps produced in layers 

[0, 1, …, l − 1], Ht is a non-liner transformation of the transition layer. Compared with 

traditional CNNs, the DRBs can easily make the network become deeper and meanwhile 

possesses fewer parameters, which make the network to be more powerful with hierarchical 

representation capability.

In summary, the proposed SNet includes convolutional layers, pooling layers, DRBs and 

deconvolutional layers and has more than 100 layers in depth. The DRBs contain different 

numbers (4,8,16,8,2) of BN-ReLU-Conv(1×1×1)-BN-ReLU-Conv(3×3×3) with growth rate 

32. After each Conv(3×3×3) layer, a dropout layer with 0.3 dropout rate is added to 

overcome the overfitting problem. Similar to the referenced works in [26], [41], [51], to 

make D obtain more useful information and enhance the accuracy of adversarial leaning, in 

domain discriminator, we take the utilization of multi-level representations into account. The 

feature representations extracted by each DRB in up-sampling path of SNet-s and SNet-t, 

total six different features representations, are treated as input of domain discriminator D. To 

eliminate the influence of weight imbalance between supervised loss from SNet-t and 

adversarial loss from D and make the boundary information be focused, we special design 

the output of domain discriminator has same size with input and each spatial unit in the 

output represents the probability of the corresponding image pixel belongs to the target 

domain. Inside domain discriminator, we employ three ConvBlocks (Conv(3×3×3)-BN-

LeakyReLU) with stride = 1, two deconvolutional layers and one output layer 

(Conv(1×1×1)) to discriminate source and target domain.

V. Experiments

A. Implementation Details

In our experiments, due to the variation of PROMISE12 challenge dataset in voxel size, 

resolution, dynamic range, position, and field of view, we first resampled all the image 

volumes into a fixed resolution of 0.625mm×0.625mm×1.5mm, and then normalized each 

volumetric images to have zero mean and unit variance. For the Philips 3T MR image 

dataset, which has uniform resolution 0.27mm×0.27mm×3mm, we only normalized the 

intensity of each volumetric images to zero mean and unit variance. The resolution of 

images in the BWH dataset also varies from 0.27mm×0.27mm×2.9mm to 

0.39mm×0.39mm×3.5mm, the in-plane image size is 512×512 pixels. We first resampled 

each volumetric images into a fixed resolution of 0.27mm×0.27mm×3.0mm, and then 

normalized the intensities to have zero mean and unit variance. To alleviate the problem of 

overfitting, data augmentation operations including rotation and flipping are used. The 

random cropping strategy is employed to further boost the datasets. During the network 

training, we randomly cropped sub-volumes in the size of 16×96×96 (D × W × H) voxels 

from the training data during every iteration.
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In the testing phase, the network SNet-t segments sub-volumes of a target image. Similar to 

other works [21], [36], we use overlapping sliding windows to crop sub-volumes. In our 

experiments, the sub-volume size is 16×96×96 (D × W × H) pixels and the stride is 8×48×48 

in pixel. The overlapping parts of the output probability maps of these sub-volumes are 

averaged to get the final volume segmentation.

The proposed method is implemented using the open source deep learning library Keras 

[52]. Each model is trained end-to-end with stochastic gradient descent (SGD) optimization 

method. In the training phase, the learning rate is initially set to 0.0001 and decreased by a 

weight decay of 1.0×10−6 after each epoch. The momentum is set to 0.9. The experiments 

were carried out on a NVIDIA GTX 1080ti GPU with 11GB memory. Due to the limitation 

of the GPU memory, we chose 4 as the batch size and set the weighted coefficients α = 1.0 

and β = 0.1 in Eqns. (1) and (3).

B. Segmentation Performance

To evaluate the performance of our BOWDA-Net, we employ PROMISE12 challenge 

dataset as target domain dataset and Philips 3T MR dataset as source domain dataset in 

experiment. we compare the results against several other methods, which have also been 

applied on the MICCAI 2012 Prostate MR Image Segmentation (PROMISE12) challenge 

dataset. In the PROMISE12 challenge, the organizers provide 30 testing MR images and the 

corresponding ground truth is held out to evaluate the proposed algorithms. The evaluation 

metrics used in PROMISE12 challenge include Dice Similarity Coefficient (DSC), the 

relative volume difference (RVD), average over the shortest distance between the boundary 

points of the volumes (ABD) and Hausdorff Distance (HD). All the evaluation metrics are 

calculated in 3D. In addition to evaluating these metrics over the entire prostate 

segmentation, the challenge organizers also calculated the boundary measures specifically 

for the apex and base parts of the prostate, because those parts are difficult to segment 

however very important for many clinical applications. The apex and base are determined by 

dividing the prostate into three approximately equal sized parts along the axial direction (the 

first 1/3 as apex and the last 1/3 as base). Then an overall score will be computed by taking 

all the criteria into consideration rank the algorithms.

The results of our proposed BOWDA-Net and the competitors are shown in Table I. Note 

that all the results reported in this section were obtained directly from the challenge website2 

on Jan 21, 2019. Since there are a large number of team submissions, only evaluation scores 

of the top 10 teams are listed. As it can be seen from Table I, we performed the best and 

therefore ranked the first place among all the teams with the overall score of 89.59, which 

demonstrates the advantage of boundary-weighted knowledge transfer and BWSL. 

Remarkably, the source domain data utilized in BOWDA-Net is not resampled to match the 

target domain data, which shows that BOWDA-Net can take general similar data to be easily 

extended to other medical image analysis tasks, especially those with limited training data. 

Some qualitative results of our method are shown in Fig. 4. It is observed that BOWDA-Net 

2https://promise12.grand-challenge.org/evaluation/results/
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can produce accurate segmentation results and delineate the clear contours of prostates in 

MR images.

C. Impact of Loss Function

To analyze the impact of our proposed BWTL and BWSL on the performance of 

segmentation, we compared the performance of the proposed BOWDA-Net with different 

supervised and adversarial losses. Before training, we split the target domain dataset 

(PROMISE12 challenge dataset) into two parts by randomly selecting data of 10 subjects for 

validation and data of the rest 40 subjects for training. The source domain data (Philips 3T 

MR dataset) employed in this experiment are also not resampled to match the target domain 

data. Table II lists the performances of BOWDA-Net using various combinations of cross 

entropy loss Lce, boundary-weighted transfer loss (BWTL) LD and boundary-weighted 

segmentation loss (BWSL) LSeg. In addition to employing DSC to evaluate the accuracy of 

segmentation, we also used ABD, HD, RVD to evaluate the segmentation performance on 

boundary.

From Table II, it can be observed that using LSeg and LD as loss functions help achieve 

better performance than using Lce. It demonstrates that BWTL and BWSL can help enhance 

the performance of networks. In addition, the best performance measured by the majority of 

the evaluation metrics is achieved when the BWTL and BWSL are both used as loss 

functions, indicating that the proposed BWTL and BWSL make the trained networks more 

effective in securing the prostate boundaries. Some segmentation examples from BOWDA-

Net with different loss functions are shown in Fig. 5. It can be seen that the segmentation 

results produced by BOWDA-Net with BWTL and BWSL have obtained more smoothing 

and accurate boundaries, which clearly demonstrates that BWTL and BWSL are effective in 

improving the quality of image segmentation.

D. Effects of Training Strategies

Since all of datasets employed in our experiments are also prostate MR images, mixing two 

domain datasets together can extend training data directly, which is a basic and 

straightforward way for solving the problem of lacking training data. On the other hand, 

fine-tuning a pre-trained network is also a commonly adopted strategy for dealing with this 

problem, especially when difference exists between the source and target domain datasets. 

Besides, fine-tuning is also a rudimentary way of transfer learning. In this section, we 

compare the performances of SNet using different strategies to demonstrate the effectiveness 

of our proposed BOWDA-Net. The tested training strategies include:

1. Target Domain Training Only: The target domain data are split into training set 

Xtrain
T  and validation set Xval

T . Only Xtrain
T  is used to train SNet.

2. Direct mixing of source and target domains: We simply mix the source domain 

data XS and target domain training set Xtrain
T  together to augment the size of 

training data.
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3. Mixing after resampling source domain data: This is similar to the above 

strategy, except that the source domain data are resampled to the same resolution 

as the target data.

4. Fine-tuning after training in source domain: We pretrain SNet on source domain 

data XS and then fine-tune it on the target data Xtrain
T .

5. Fine-tuning after training with resampling: This is similar to the above strategy, 

except that the source domain data are resampled to the same resolution as the 

target data.

6. The proposed domain adaptation network with cross entropy: This is similar to 

the BOWDA-Net, except that the loss function is replaced by cross entropy.

7. The proposed domain adaptation strategy (BOWDA-Net).

In this section, PROMISE12 challenge dataset and Philips 3T MR prostate dataset are 

employed as target and source domain data, respectively. Table III shows the segmentation 

performances on PROMISE12 challenge dataset using the training strategies described 

above. It can be seen that directly mixing the source domain data and target domain data has 

a negative impact on the segmentation performance, which is even worse than using target 

domain data alone for training. There are two major reasons for that. One of the them is the 

domain shift problem shown in Fig. 1. The other one is that the amount of source domain 

data is larger than the target domain data. Simply mixing the data together would make the 

network focus more on the source domain rather than the target domain. The SNet then 

yields poorer performance in the target domain in this case. This problem is partially 

remedied by resampling the source domain data to the same resolution as the target domain 

data, where the DSC value was increased from 87.78% to 89.81%.

Similar effects can be observed on fine-tuning SNet pre-trained in the source domain in 

Table III. Compared with pre-training SNet directly on the source domain data, fine-tuning 

can obtain more accurate segmentation results when the pre-training uses resampled source 

domain data. However, the performance is still not as good as training SNet by mixing the 

resampled source domain data and the target domain data. This indicates that the capability 

of fine-tuning is limited and cannot overcome the problem of lacking sufficient training data. 

The influence of the proposed BWTL and BWSL can be observed in Table III. Compared 

with the proposed domain adaptive network trained with cross entropy, the network with 

BWTL and BWSL obtained better results. Furthermore, we performed statistical comparison 

of the results using paired t-test with a confidence interval of 0.95. BOWDA-Net is 

compared to the methods for statistical significance, and all the p values are also given in 

Table III. It can be seen that the proposed BOWDA-Net significantly outperforms the other 

methods with p < 0.05. In addition, we also summarized the performance of the 

segmentation methods in Fig. 6 using box plots. The segmentation results of our proposed 

BOWDA-Net have much smaller variance and less outliers compared to others.

E. Comparison with Other Transfer Learning Methods

To demonstrate the effectiveness of our proposed BOWDA-Net through fair comparison 

using the same 81+50 cases (Philips 3T MR prostate dataset + PROMISE12 challenge 
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dataset), we selected the method submitted by “chen.junqiang” [53] for comparison, because 

their algorithm is the highest ranked method on the leader board3 with published source 

code4. In addition, we also compare our method against the state-of-the-art domain 

adaptation method by Mehran et al. [54] with the same training and test datasets. In their 

work, two networks, an FCN performing segmentation on the input images called segmentor 

and a CNN performing classification on the outputs of the segmentor called domain 

classifier, are combined for image segmentation. The two networks are connected through a 

gradient reversal layer, which enables adversarial training.

To be fair in evaluating the performance of this domain adaptation method, same like our 

model, we utilize target domain data label for model training. The model by “chen.junqiang” 

employs 3D VNet for prostate segmentation, we thus denote the method as VNet thereafter. 

We also evaluate the performance of Vnet under two training strategies: 1) Directly mixing 

the source domain data XS and target domain training set Xtrain
T  together to augment the size 

of training data; 2) Mixing after resampling source domain data, which is similar to the 

above strategy except that the source domain data are resampled to the same resolution as 

the target. It is worth noting that the source domain images utilized by BOWDA-Net are also 

not resampled to match the target domain data. The segmentation performance of the our 

BOWDA-Net and compared methods are listed in Table IV. It can be seen that our proposed 

BOWDA-Net performed the best and all the performance differences are significant with p < 

0.05.

F. Evaluation on the BWH Dataset

In this experimental setting, the 81 prostate MR images from Philips 3T MR dataset are also 

employed as source data. Three subjects from the BWH dataset are randomly selected as test 

data and the reset are utilized as training data. We then evaluated the performance of our 

proposed model on this dataset under four different experimental settings as in Section V-D.

Table V shows the segmentation performances using the training strategies described above. 

Similar to the segmentation results on PROMISE12, our proposed BOWDA-Net gets the 

highest DSC of 89.67%. We also compared BOWDA-Net with the rest of the methods for 

statistical significance. It can be seen that the proposed BOWDA-Net significantly 

outperforms other methods with p < 0.05.

G. Network Ablation Study

In order to evaluate the effectiveness of residual and dense connections in DRBs and long 

connections used in our proposed SNet, we created four different configurations of our 

model as follows.

1. Fully convolutional network (FCN): This is indeed the version of our model 

without all the dense, residual and long connections.

2. FCN + Dense: Using only dense connections.

3https://promise12.grand-challenge.org/evaluation/results/
4The source code of our proposed BOWDA-Net can be found at: https://github.com/ahukui/BOWDANet
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3. FCN + Dense + Residual: Using both dense and residual connections.

4. The proposed domain image segmentation network (SNet): Using dense, residual 

and long connections as presented earlier.

Table VI shows the performance of these networks trained on PROMISE12 challenge 

dataset by using the target domain data Xtrain
T  only. It can be seen that adding residual, long 

and dense connections can help achieve more accurate segmentation than other networks.

VI. Conclusions

In this paper, a boundary-weighted domain adaptive neural network (BOWDA-Net) is 

proposed to address two challenges in prostate image segmentation, which are the lack of 

clear boundary and the lack of enough annotated data for training CNNs. Advanced transfer 

learning method is proposed by incorporating boundary weighting to the scheme. Extensive 

experiments on the publicly available PROMISE12 and BWH datasets demonstrate that our 

proposed method can get more accurate boundaries and achieve superior results compared 

with other state-of-the-art methods. In our future work, we will extend the proposed method 

to segment different organs from other imaging modalities.
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Fig. 1. 
Visualization of the source and target domain images using t-SNE showing the problem of 

domain shift.
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Fig. 2. 
Histograms of the gradient magnitudes at boundary locations from normalized source and 

target domain datasets, respectively.
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Fig. 3. 
Overview of the proposed boundary-weighted domain adaptive neural network (BOWDA-

Net).
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Fig. 4. 
Sample segmentation results of the prostate. The yellow and red contours indicate ground 

truth and our segmentation results, respectively.
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Fig. 5. 
Example segmentation results obtained using different loss functions. The gold standard 

segmentation is delineated in yellow and the deep learning segmentation results are in red.
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Fig. 6. 
Box plots of the segmentation evaluation results using different training strategies and 

networks on PROMISE12 challenge dataset.
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TABLE II

Effects of loss functions in segmentation performance on PROMISE12 challenge dataset.

SNet-t Loss D Loss ABD [mm] HD [mm] RVD [%] DSC [%]

Lce Lce 1.21 11.55 −3.25 90.38

Lce LD 2.38 12.02 4.02 90.49

LSeg Lce 1.65 6.83 3.71 91.47

LSeg LD 1.58 6.42 3.24 92.54
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TABLE III

Quantitative evaluation of different training strategies on PROMISE12 challenge dataset.

Strategy DSC [%] P-Value

Target domain training only 88.76 0.00988

Direct mixing of source and target domains 87.78 0.01011

Mixing after resampling source domain data 89.81 0.00070

Fine-tuning after training in source domain 89.34 0.00192

Fine-tuning after training with resampling 89.68 0.00038

Domain adaptive network with cross entropy 90.38 0.00852

BOWDA-Net 92.54 ———
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TABLE IV

Quantitative comparison of the proposed method and other existing methods on PROMISE12 challenge 

dataset.

Method DSC [%] P-Value

Mehran et al. [54] 81.09 0.000056

chen.junqiang [53] under strategy-1 87.01 0.003302

chen.junqiang [53] under strategy-2 89.51 0.001072

BOWDA-Net 92.54 ———
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TABLE V

Quantitative evaluation of the methods on the BWH dataset.

Strategy DSC [%] P-Value

Target domain training only 85.99 0.034

Mixing after resampling source domain data 87.76 0.029

Fine-tuning after training with resampling 88.85 0.004

BOWDA-Net 89.67 ——
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TABLE VI

Performances of SNet under different ablation configurations on PROMISE12 challenge dataset.

Configurations DSC [%]

FCN 77.92

FCN + Dense 86.02

FCN + Dense + Residual 86.94

SNet 88.76
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